Anomaly in Symplectic Integrator

نویسنده

  • Hiroto Kobayashi
چکیده

Effective Liouville operators of the firstand the second-order symplectic integrators are obtained for the one-dimensional harmonic-oscillator system. The operators are defined only when the time step is less than two. Absolute values of the coordinate and the momentum monotonically increase for large time steps. PACS numbers: 05.10.-a, 02.10.Hh

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

More anomaly-free models of six-dimensional gauged supergravity

We construct a huge number of anomaly-free models of six-dimensional N = (1, 0) gauged supergravity. The gauge groups are products of U(1) and SU(2), and every hyperino is charged under some of the gauge groups. It is also found that the potential may have flat directions when the R-symmetry is diagonally gauged together with another gauge group. In an appendix, we determine the contribution to...

متن کامل

g-SYMPLECTIC ORBITS AND A SOLUTION OF THE BRST CONSISTENCY CONDITION

For any Lie algebra g we introduce the notion of gsymplectic structures and show that every orbit of a principal G-bundle carries a natural g-symplectic form and an associated momentum map induced by the Maurer–Cartan form on G. We apply this to the BRST bicomplex and show that the associated momentum map is a solution of the Wess–Zumino consistency condition for the anomaly.

متن کامل

N=2 Symplectic Reparametrizations in a Chiral Background † N=2 Symplectic Reparametrizations in a Chiral Background

We study the symplectic reparametrizations that are possible for theories of N = 2 supersymmetric vector multiplets in the presence of a chiral background and discuss some of their consequences. One of them concerns an anomaly arising from a conflict between symplectic covariance and holomorphy. ABSTRACT We study the symplectic reparametrizations that are possible for theories of N = 2 supersym...

متن کامل

Konishi Anomalies and Curves without Adjoints

Generalized Konishi anomaly relations in the chiral ring of N=1 supersymmetric gauge theories with unitary gauge group and chiral matter field in two-index tensor representations are derived. Contrary to previous investigations of related models we do not include matter multiplets in the adjoint representation. The corresponding curves turn out to be hyperelliptic. We also point out equivalence...

متن کامل

ar X iv : h ep - t h / 97 07 11 2 v 1 1 1 Ju l 1 99 7 On the Point - Splitting Method of the Commutator Anomaly of Gauss Law Operators

We analyze the generalized point-splitting method and Jo's result for the commutator anomaly. We find that certain classes of general regularization kernels satisfying integral conditions provide a unique result, which, however, differs from Faddeev's cohomological result.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008